UV to XYZ Converter - CIE 1960 UCS to Tristimulus Values

Professional tool to convert CIE 1960 UCS chromaticity coordinates (u, v) back to CIE XYZ tristimulus values. Essential for reconstructing full color information from chromaticity data in lighting design, LED manufacturing, and color science applications. Requires luminance (Y) input for complete color specification.

Chromaticity ReconstructionLuminance RequiredProfessional ToolColor Science

Critical: Luminance (Y) Value Required for Complete Conversion

UV coordinates are chromaticity coordinates - they only describe the color's hue and saturation, not its brightness. To reconstruct the complete XYZ color specification, you must provide the Y (luminance) value separately.

Y Value Guidelines:

  • Range: 0-100 (typical)
  • 0 = Perfect black
  • 100 = Perfect white diffuser
  • 18 = Middle gray (photography)

Common Applications:

  • LED color reconstruction
  • Display calibration
  • Color temperature analysis
  • Spectral data processing

Interactive UV to XYZ Converter

Convert UV chromaticity coordinates to XYZ color space with luminance input

Understanding Chromaticity Reconstruction

UV to XYZ conversion is fundamentally different from XYZ to UV because it involvesreconstructing three-dimensional color information from two-dimensional chromaticity data. This process requires understanding the mathematical relationship between chromaticity and tristimulus values.

Why Luminance (Y) is Required:

  • Dimensionality: UV (2D) → XYZ (3D) requires additional information
  • Normalization: UV coordinates are normalized, losing absolute scale
  • Infinite solutions: Infinite XYZ colors can have identical UV coordinates
  • Brightness specification: Y determines the color's luminance level

Practical Considerations:

Perfect Black:Y = 0
18% Gray Card:Y = 18
Typical Paper:Y = 80-90
Perfect Diffuser:Y = 100
LED Output:Y = Variable

UV to XYZ Mathematical Formulation

Reconstruction Formulas:

X = (1.5 × u × Y) / v
Y = Y (input parameter)
Z = (6Y/v - X - 15Y) / 3

Derivation Steps:

Step 1: From the forward transformation:

u = 4X / (X + 15Y + 3Z)
v = 6Y / (X + 15Y + 3Z)

Step 2: Solve for X in terms of u, v, Y:

X = (1.5 × u × Y) / v

Step 3: Solve for Z using the constraint:

Z = (6Y/v - X - 15Y) / 3

Edge Case: When v = 0, the formulas become undefined. This occurs for colors on the u-axis, which are theoretical and rarely encountered in practice.

Professional Applications & Use Cases

💡

LED Manufacturing

  • Color reconstruction: Converting measured UV coordinates back to XYZ
  • Binning verification: Confirming LED color consistency
  • Quality control: Validating production color specifications
  • Color mixing: Calculating individual LED contributions
📊

Spectral Analysis

  • Data processing: Converting spectrophotometer UV output
  • Color matching: Reconstructing colors from chromaticity
  • Material analysis: Determining color properties of samples
  • Research applications: Color science and vision studies
🖥️

Display Calibration

  • Monitor setup: Converting chromaticity to display values
  • Projector calibration: Accurate color reproduction
  • Color management: ICC profile creation and validation
  • Gamut mapping: Color space transformation workflows

Frequently Asked Questions

Why can't UV coordinates be converted to XYZ without the Y value?

UV coordinates are chromaticity coordinates that represent color quality (hue and saturation) but not quantity (brightness). They're derived by normalizing XYZ values, which removes the absolute scale. To reconstruct XYZ, you need to specify the brightness level through the Y (luminance) component.

How do I determine the correct Y value to use?

The Y value depends on your application context. For LED measurements, use the measured luminance. For color matching, use the target brightness. For theoretical calculations, common values include 18 (middle gray), 50 (medium brightness), or 100 (maximum white). The choice affects only brightness, not the color appearance.

What happens if I use v = 0 in the conversion?

When v = 0, the conversion formulas become mathematically undefined (division by zero). This represents colors on the u-axis of the UV diagram, which are theoretical edge cases rarely encountered in practice. Our tool handles this gracefully by returning appropriate default values or error messages.

Is the UV to XYZ conversion reversible and accurate?

Yes, the conversion is mathematically exact and fully reversible when the Y value is known. Converting XYZ → UV → XYZ (with the same Y) will return the original values within floating-point precision. The accuracy depends only on the precision of your input values and computational environment.

Programming Implementation Examples

🐍Python Implementation

import numpy as np

def uv_to_xyz(u, v, Y):
    """
    Convert CIE 1960 UCS coordinates to XYZ

    Parameters:
    u, v: float or array-like
        CIE 1960 UCS chromaticity coordinates
    Y: float or array-like
        Luminance value (0-100 typical)

    Returns:
    tuple: (X, Y, Z) tristimulus values
    """
    u, v, Y = np.asarray(u), np.asarray(v), np.asarray(Y)

    # Handle division by zero
    mask = v != 0
    X = np.zeros_like(u)
    Z = np.zeros_like(u)

    # Calculate X and Z where v != 0
    X[mask] = (1.5 * u[mask] * Y[mask]) / v[mask]
    Z[mask] = (6*Y[mask]/v[mask] - X[mask] - 15*Y[mask]) / 3

    return X, Y, Z

# Example usage
u, v, Y = 0.4476, 0.4074, 50.0  # Example values
X, Y_out, Z = uv_to_xyz(u, v, Y)
print(f"XYZ: ({X:.2f}, {Y_out:.2f}, {Z:.2f})")

# Batch processing
uv_data = np.array([[0.4476, 0.4074],  # Color 1
                    [0.3127, 0.3290],  # D65 white
                    [0.1978, 0.4683]])  # Example color
Y_values = np.array([50, 100, 25])

X_vals, Y_vals, Z_vals = uv_to_xyz(uv_data[:, 0],
                                   uv_data[:, 1],
                                   Y_values)
for i, (x, y, z) in enumerate(zip(X_vals, Y_vals, Z_vals)):
    print(f"Color {i+1}: XYZ({x:.2f}, {y:.2f}, {z:.2f})")

JavaScript Implementation

/**
 * Convert CIE 1960 UCS coordinates to XYZ
 * @param {number} u - u chromaticity coordinate
 * @param {number} v - v chromaticity coordinate
 * @param {number} Y - Luminance value
 * @returns {Object} {X, Y, Z} tristimulus values
 */
function uvToXyz(u, v, Y) {
    // Validate inputs
    if (typeof u !== 'number' || typeof v !== 'number' || typeof Y !== 'number') {
        throw new Error('All parameters must be numbers');
    }

    // Handle edge case where v = 0
    if (v === 0) {
        console.warn('v = 0: Conversion undefined, returning default values');
        return { X: 0, Y: Y, Z: 0 };
    }

    // Calculate X and Z
    const X = (1.5 * u * Y) / v;
    const Z = (6*Y/v - X - 15*Y) / 3;

    return { X, Y, Z };
}

// Class-based implementation
class UVConverter {
    static toXyz(uv, Y) {
        return uvToXyz(uv.u, uv.v, Y);
    }

    static batchConvert(uvArray, YArray) {
        if (uvArray.length !== YArray.length) {
            throw new Error('UV and Y arrays must have same length');
        }

        return uvArray.map((uv, i) => ({
            ...uv,
            xyz: this.toXyz(uv, YArray[i])
        }));
    }
}

// Example usage
const uv = { u: 0.4476, v: 0.4074 };
const Y = 50;
const xyz = UVConverter.toXyz(uv, Y);
console.log(`XYZ: (${xyz.X.toFixed(2)}, ${xyz.Y.toFixed(2)}, ${xyz.Z.toFixed(2)})`);

// Batch processing
const uvColors = [
    { u: 0.4476, v: 0.4074 },  // Color 1
    { u: 0.3127, v: 0.3290 },  // D65 white
    { u: 0.1978, v: 0.4683 }   // Example color
];
const luminances = [50, 100, 25];

const results = UVConverter.batchConvert(uvColors, luminances);
results.forEach((result, i) => {
    const {X, Y, Z} = result.xyz;
    console.log(`Color ${i+1}: XYZ(${X.toFixed(2)}, ${Y.toFixed(2)}, ${Z.toFixed(2)})`);
});