XYZ to UV Coordinates Converter - CIE 1960 UCS Chromaticity Tool

Professional online tool to convert CIE XYZ tristimulus values to CIE 1960 UCS (Uniform Chromaticity Scale) coordinates (u, v). Essential for color temperature calculations, LED characterization, lighting design, and optical device calibration in the lighting industry.

CIE 1960 UCSColor TemperatureLED CharacterizationLighting Industry

Interactive XYZ to UV Converter

Convert XYZ coordinates to UV chromaticity coordinates with real-time calculations

What is CIE 1960 UCS (Uniform Chromaticity Scale)?

The CIE 1960 UCS (Uniform Chromaticity Scale) was developed by David MacAdam to create a more perceptually uniform chromaticity diagram. Unlike the CIE 1931 xy chromaticity diagram, the UCS provides better visual uniformity where equal distances represent more similar perceived color differences.

Key advantages of UV coordinates:

  • Perceptual uniformity: Equal distances represent similar color differences
  • Color temperature calculations: Essential for correlated color temperature (CCT)
  • LED characterization: Standard for LED binning and quality control
  • Lighting standards: Used in ANSI C78.377 and IES standards
  • Optical calibration: Critical for display and camera calibration
  • Color difference metrics: Foundation for advanced color difference formulas

Industry Note: The CIE 1960 UCS is still widely used in the lighting industry for color temperature specifications, even though it was superseded by the CIE 1976 UCS (u', v') for general colorimetric applications.

XYZ to UV Conversion Formula & Mathematics

CIE 1960 UCS Transformation:

u = 4X / (X + 15Y + 3Z)
v = 6Y / (X + 15Y + 3Z)

Formula Explanation:

Input Parameters:

  • X: Red-green tristimulus value
  • Y: Luminance (brightness) component
  • Z: Blue-yellow tristimulus value

Output Coordinates:

  • u: Horizontal chromaticity (≈0.0-0.7)
  • v: Vertical chromaticity (≈0.0-0.6)
  • Both coordinates are dimensionless

Mathematical Note: The denominator (X + 15Y + 3Z) normalizes the coordinates, ensuring they represent chromaticity (color quality) independent of luminance. The coefficients 4, 15, 6, and 3 were chosen by MacAdam to optimize perceptual uniformity.

Color Temperature and UV Coordinates

UV coordinates are fundamental for calculating Correlated Color Temperature (CCT), which describes how "warm" or "cool" a light source appears. This is crucial in the lighting industry for LED specification and quality control.

CCT Calculation Process:

  1. Convert XYZ to UV coordinates
  2. Find closest point on Planckian locus
  3. Calculate temperature using Robertson's method
  4. Determine color temperature in Kelvin

Common Color Temperatures:

Candlelight:1900K
Warm White LED:2700K-3000K
Cool White LED:4000K-5000K
Daylight:6500K

LED Industry Applications:

  • LED Binning: Grouping LEDs by color consistency
  • Quality Control: Ensuring color uniformity in production
  • Color Mixing: Combining different LED colors
  • Specification: Meeting ANSI C78.377 standards

Measurement Standards:

  • ANSI C78.377: LED color consistency
  • IES LM-79: LED testing procedures
  • CIE 15: Colorimetry standards
  • Energy Star: Efficiency requirements

Professional Applications & Industries

🔬

Color Science Research

  • Colorimetric analysis: Precise color measurement and specification
  • Color difference studies: Perceptual uniformity research
  • Metamerism analysis: Color matching under different illuminants
  • Color appearance models: Advanced color prediction algorithms
  • Spectral analysis: Converting spectral data to chromaticity
💡

Lighting & LED Industry

  • LED binning: Sorting LEDs by color consistency (MacAdam ellipses)
  • CCT calculation: Determining correlated color temperature
  • Quality control: Ensuring ANSI C78.377 compliance
  • Color mixing: Multi-channel LED system design
  • Circadian lighting: Tunable white light systems
📱

Display Technology

  • Monitor calibration: Professional display color accuracy
  • Gamut mapping: Color space conversion and optimization
  • White point adjustment: Display color temperature tuning
  • Projector setup: Cinema and presentation calibration
  • Mobile displays: Smartphone and tablet color management
🏭

Manufacturing & QC

  • Production control: Consistent color in manufacturing
  • Material testing: Paint, textile, and plastic color verification
  • Batch matching: Ensuring color consistency across lots
  • Automotive industry: Interior and exterior color matching
  • Cosmetics: Foundation and makeup color development
🎨

Design & Creative

  • Color palette creation: Harmonious color scheme development
  • Brand color specification: Consistent corporate identity
  • Print production: Color accuracy in offset and digital printing
  • Photography: Color grading and correction workflows
  • Interior design: Lighting and color coordination
🔧

Optical Instruments

  • Colorimeter calibration: Instrument accuracy verification
  • Spectrophotometer setup: Measurement device configuration
  • Camera characterization: Digital imaging color accuracy
  • Scanner profiling: Document and image digitization
  • Microscopy: Scientific imaging color standardization

Frequently Asked Questions

What's the difference between CIE 1960 UCS and CIE 1976 UCS?

CIE 1960 UCS uses (u, v) coordinates, while CIE 1976 UCS uses (u', v') coordinates. The 1976 version provides better perceptual uniformity and is preferred for general colorimetric applications. However, the 1960 version is still widely used in the lighting industry for color temperature calculations and LED specifications.

Why are UV coordinates important for LED manufacturing?

UV coordinates enable precise LED binning and color consistency control. LEDs with similar UV coordinates will appear the same color to human observers, making them essential for quality control in LED production. The ANSI C78.377 standard uses UV coordinates to define acceptable color variation ranges for LED products.

How accurate is the XYZ to UV conversion?

The conversion is mathematically exact and deterministic. The accuracy depends on the precision of your input XYZ values. Our tool uses double-precision floating-point arithmetic to ensure maximum accuracy for professional applications. The conversion follows the official CIE formulas without approximations.

Can I use UV coordinates for color temperature calculations?

Yes! UV coordinates are essential for calculating Correlated Color Temperature (CCT). The process involves finding the closest point on the Planckian locus in the UV diagram and using methods like Robertson's algorithm to determine the temperature in Kelvin. This is the standard approach used in the lighting industry.

What are typical UV coordinate ranges?

For visible colors, u coordinates typically range from about 0.0 to 0.7, and v coordinates from 0.0 to 0.6. Common white light sources have u values around 0.15-0.25 and v values around 0.3-0.5. The exact values depend on the color temperature and tint of the light source.

Programming Implementation Examples

🐍Python Implementation (NumPy)

import numpy as np

def xyz_to_uv(X, Y, Z):
    """
    Convert CIE XYZ to CIE 1960 UCS coordinates

    Parameters:
    X, Y, Z: float or array-like
        CIE XYZ tristimulus values

    Returns:
    tuple: (u, v) chromaticity coordinates
    """
    # Handle array inputs
    X, Y, Z = np.asarray(X), np.asarray(Y), np.asarray(Z)

    # Calculate denominator
    denominator = X + 15*Y + 3*Z

    # Handle division by zero
    mask = denominator != 0
    u = np.zeros_like(X)
    v = np.zeros_like(Y)

    u[mask] = (4 * X[mask]) / denominator[mask]
    v[mask] = (6 * Y[mask]) / denominator[mask]

    return u, v

# Example usage
X, Y, Z = 41.24, 21.26, 1.93  # sRGB Red (D65)
u, v = xyz_to_uv(X, Y, Z)
print(f"UV: ({u:.6f}, {v:.6f})")

# Batch processing example
xyz_colors = np.array([[41.24, 21.26, 1.93],   # Red
                       [35.76, 71.52, 11.92],   # Green
                       [18.05, 7.22, 95.05]])   # Blue
u_vals, v_vals = xyz_to_uv(xyz_colors[:, 0],
                           xyz_colors[:, 1],
                           xyz_colors[:, 2])
for i, (u, v) in enumerate(zip(u_vals, v_vals)):
    print(f"Color {i+1}: u={u:.4f}, v={v:.4f}")

JavaScript Implementation (ES6+)

/**
 * Convert CIE XYZ to CIE 1960 UCS coordinates
 * @param {number} X - X tristimulus value
 * @param {number} Y - Y tristimulus value
 * @param {number} Z - Z tristimulus value
 * @returns {Object} {u, v} chromaticity coordinates
 */
function xyzToUv(X, Y, Z) {
    // Validate inputs
    if (typeof X !== 'number' || typeof Y !== 'number' || typeof Z !== 'number') {
        throw new Error('XYZ values must be numbers');
    }

    // Calculate denominator
    const denominator = X + 15*Y + 3*Z;

    // Handle edge case
    if (denominator === 0) {
        return { u: 0, v: 0 };
    }

    const u = (4 * X) / denominator;
    const v = (6 * Y) / denominator;

    return { u, v };
}

// Class-based implementation for color management
class ColorConverter {
    static xyzToUv(xyz) {
        const { X, Y, Z } = xyz;
        return xyzToUv(X, Y, Z);
    }

    static batchXyzToUv(xyzArray) {
        return xyzArray.map(xyz => this.xyzToUv(xyz));
    }
}

// Example usage
const srgbRed = { X: 41.24, Y: 21.26, Z: 1.93 };
const uv = ColorConverter.xyzToUv(srgbRed);
console.log(`UV: (${uv.u.toFixed(6)}, ${uv.v.toFixed(6)})`);

// Batch processing
const colors = [
    { X: 41.24, Y: 21.26, Z: 1.93 },  // Red
    { X: 35.76, Y: 71.52, Z: 11.92 }, // Green
    { X: 18.05, Y: 7.22, Z: 95.05 }   // Blue
];
const uvResults = ColorConverter.batchXyzToUv(colors);
uvResults.forEach((uv, i) => {
    console.log(`Color ${i+1}: u=${uv.u.toFixed(4)}, v=${uv.v.toFixed(4)}`);
});

🔷C++ Implementation

#include <iostream>
#include <vector>
#include <iomanip>

struct UV {
    double u, v;
};

struct XYZ {
    double X, Y, Z;
};

/**
 * Convert CIE XYZ to CIE 1960 UCS coordinates
 */
UV xyzToUv(const XYZ& xyz) {
    double denominator = xyz.X + 15.0 * xyz.Y + 3.0 * xyz.Z;

    if (denominator == 0.0) {
        return {0.0, 0.0};
    }

    double u = (4.0 * xyz.X) / denominator;
    double v = (6.0 * xyz.Y) / denominator;

    return {u, v};
}

// Example usage
int main() {
    // sRGB Red color
    XYZ red = {41.24, 21.26, 1.93};
    UV uv = xyzToUv(red);

    std::cout << std::fixed << std::setprecision(6);
    std::cout << "UV: (" << uv.u << ", " << uv.v << ")" << std::endl;

    // Batch processing
    std::vector<XYZ> colors = {
        {41.24, 21.26, 1.93},   // Red
        {35.76, 71.52, 11.92},  // Green
        {18.05, 7.22, 95.05}    // Blue
    };

    for (size_t i = 0; i < colors.size(); ++i) {
        UV result = xyzToUv(colors[i]);
        std::cout << "Color " << (i+1) << ": u="
                  << std::setprecision(4) << result.u
                  << ", v=" << result.v << std::endl;
    }

    return 0;
}

🦀Rust Implementation

#[derive(Debug, Clone, Copy)]
pub struct Xyz {
    pub x: f64,
    pub y: f64,
    pub z: f64,
}

#[derive(Debug, Clone, Copy)]
pub struct Uv {
    pub u: f64,
    pub v: f64,
}

impl Xyz {
    pub fn new(x: f64, y: f64, z: f64) -> Self {
        Self { x, y, z }
    }

    /// Convert XYZ to CIE 1960 UCS coordinates
    pub fn to_uv(&self) -> Uv {
        let denominator = self.x + 15.0 * self.y + 3.0 * self.z;

        if denominator == 0.0 {
            return Uv { u: 0.0, v: 0.0 };
        }

        let u = (4.0 * self.x) / denominator;
        let v = (6.0 * self.y) / denominator;

        Uv { u, v }
    }
}

fn main() {
    // sRGB Red color
    let red = Xyz::new(41.24, 21.26, 1.93);
    let uv = red.to_uv();

    println!("UV: ({:.6}, {:.6})", uv.u, uv.v);

    // Batch processing with iterator
    let colors = vec![
        Xyz::new(41.24, 21.26, 1.93),   // Red
        Xyz::new(35.76, 71.52, 11.92),  // Green
        Xyz::new(18.05, 7.22, 95.05),   // Blue
    ];

    for (i, color) in colors.iter().enumerate() {
        let uv = color.to_uv();
        println!("Color {}: u={:.4}, v={:.4}", i + 1, uv.u, uv.v);
    }
}